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Abstract

We propose a new method for sampling camera response
functions: temporally mixing two uncalibrated irradiances
within a single camera exposure. Calibration methods rely
on some known relationship between irradiance at the cam-
era image plane and measured pixel intensities. Prior ap-
proaches use a color checker chart with known reflectances,
registered images with different exposure ratios, or even the
irradiance distribution along edges in images. We show that
temporally blending irradiances allows us to densely sam-
ple the camera response function with known relative irra-
diances. Our first method computes the camera response
curve using temporal mixtures of two pixel intensities on
an uncalibrated computer display. The second approach
makes use of temporal irradiance mixtures caused by mo-
tion blur. Both methods require only one input image, al-
though more images can be used for improved robustness
to noise or to cover more of the response curve. We show
that our methods compute accurate response functions for
a variety of cameras.

1. Introduction

Many computer vision algorithms assume that image
pixel intensities are linearly related to scene irradiance. For
most cameras, however, this is not the case. Camera man-
ufacturers often deliberately engineer nonlinear response
functions into their cameras in order to match film charac-
teristics or to account for nonlinear characteristics of com-
puter displays and the human visual system. Even if the
response is intended to be linear, the analog circuitry in the
image sensors themselves introduces small nonlinearities.
Thus, the camera’s radiometric response function, which
maps scene irradiance to measured pixel intensities, is gen-
erally a nonlinear function. Therefore, we must estimate the
response function in order to linearize the image intensities
and improve the performance of vision algorithms.

∗This work was done while Hui Xu was an intern at Microsoft Research
Asia.

The response function f is represented as

M = f(I), (1)

where I represents the irradiance at sensor, and M is the
measured pixel intensity. Conventionally the axes are nor-
malized to measurement and irradiance ranges in [0, 1].
This function is assumed to be constant throughout the im-
age. Imaging and computer vision algorithms are concerned
with irradiance, so we generally solve for the inverse radio-
metric response function, g = f−1(M).

We propose a radiometric calibration approach based on
temporally mixing two different irradiances within a sin-
gle camera exposure. Cameras accumulate incoming light
for the duration of their exposure, and scene brightness at
any given pixel may vary due to motion blur or illumina-
tion changes. We constrain the incident brightness to be
one of only two values. For example, we could use motion
blur across the boundary between two uniformly colored
regions. Although we do not know the accumulated irradi-
ance at each pixel, we do know that if the motion is linear,
the brightness in the blurred region will vary linearly along
the direction of motion. For a camera with a non-linear
response, however, the measured pixel intensities will not
vary linearly. Similarly, we can use a simple illumination
change, like a rapidly blinking light, to create brightness
mixtures. In this case, the irradiance at each pixel is a linear
blend of the irradiances with the light on and off. Linearly
increasing the portion of the exposure that the light is on
creates a linearly increasing series of accumulated irradi-
ances. Again, this linearity does not hold for the measured
pixel intensities if the response function is nonlinear. Our
method exploits these nonlinear intensity measurements to
estimate the response functions.

In the rest of this section, we describe how our approach
complements prior work in radiometric calibration. Sec-
tion 2 explains the general idea of temporal irradiance mix-
ing. In sections 3 and 4, we present two specific methods
to use this idea for radiometric calibration. Section 5 shows
results with various cameras validating our techniques, and
section 6 discusses the implications of our work and av-
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enues for future research.

1.1. Prior Work

Radiometric calibration methods require means to col-
lect samples of the radiometric response function with some
known relationship. For example, one approach is to use an
image of a uniformly illuminated Macbeth color chart [1],
which has color patches with known reflectances. Mann
and Picard [9] calibrate using multiple registered images of
a static scene with different known exposure times. The ra-
tio of the irradiance at the same pixel in different images
is equal to the ratio of the exposure times of the images.
They use this relationship to solve for a parametric response
function of the form M = α + βIγ . Debevec and Ma-
lik [2] also use multiple images with different exposures,
but solve for a smooth non-parametric function. Mitsunaga
and Nayar’s method [11] requires only rough estimates of
the exposure times and iteratively computes a polynomial
inverse response function and more accurate estimates of
the exposure times. Tsin et al. [13] use a statistical model
of the CCD image formation process to iteratively estimate
non-parametric inverse response functions.

Several methods have been developed that use multiple
exposures, but do not require precise registration. Gross-
berg and Nayar [3] use the relationship between the inten-
sity histograms of two scenes imaged with different expo-
sures, because intensity histograms are relatively unaffected
by small changes in the scene. Kim and Pollefeys [5] com-
pute point correspondences between images. Mann [8] esti-
mates response functions from a rotating and zooming cam-
era.

Lin et al. [6] compute the radiometric response func-
tion from RGB distributions along color edges in a single
image. They use a prior model of response functions com-
piled by Grossberg and Nayar [4] to compute the radiomet-
ric response function as the one which maps nonlinear mea-
sured RGB intensity distributions to linear ones. Lin and
Zhang [7] adapt this idea to grayscale images by measur-
ing the nonuniformity of edge intensity histograms. Re-
cently, Matsushita and Lin [10] proposed a method to com-
pute camera response functions from noise distributions.
Analyzing noise distributions requires much input data, al-
though a single image can be used under very carefully con-
trolled conditions.

Our work differs from the prior art in that we use tempo-
ral color mixtures to directly sample the response function.
We do not need special equipment or multiple registered
images with precise exposure control. Our methods require
only a single image, do not rely on statistical priors over the
response function, and work with color or grayscale images.
In some ways our approach complements the work of Lin et
al. [6] in that we use temporal mixtures, while their meth-
ods use spatial mixtures. Although they mention defocus

and motion blur as sources of linear irradiance blends, they
do not test this idea. Moreover, calibration from temporal
color mixtures frees us from reliance on indirect, statistical
methods and priors over camera response functions.

2. Calibration Using Temporal Irradiance
Mixtures

Following the notation of Mitsunaga and Nayar [11], we
can describe the relationship between image irradiance I
and scene radiance L as

E(t) = L(t)
π

4

(
d

h

)2

cos4(φ), (2)

where h is the lens focal length, d is the aperture diameter,
and φ is the angle subtended by the principal ray from the
imaging axis. We will simplify this to E = kL(t), where
k = π

4 ( d
h )2 cos4(φ). We assume, for now, that k is constant.

Image sensors and film are integrating devices, so the total
integrated irradiance for an exposure that lasts from time t0
to time t1 is

I =
∫ t1

t0

kL(t)dt. (3)

Prior methods assume that L(t) is constant. Let us as-
sume, instead, L(t) can be one of only two values, L0 or L1.
Then the integrated irradiance at the sensor becomes

I = αI0 + (1− α)I1, (4)

where 0 ≤ α ≤ 1 is the portion of time that the scene
radiance is L0. I0 and I1 are the accumulated irradiances
corresponding to a constant scene radiance of L0 or L1, re-
spectively, for the entire exposure, i.e., I0 =

∫ t1
t0

kL0(t)dt

and I1 =
∫ t1

t0
kL1(t)dt. We can generate any convex com-

bination of I0 and I1 by varying α. We propose to use these
blends to sample the response function for radiometric cal-
ibration. Our method can be applied to grayscale or color
images; for color images, we can use the same mixtures
to sample and independently calibrate the three color chan-
nels.

2.1. Scale and Offset Ambiguities

The irradiances in our mixtures are unknown, so our
measurements have two ambiguities. Figure 1 shows this
graphically. We are blending a low irradiance Ilo and a high
irradiance Ihi, corresponding to measured intensities Mlo

and Mhi, respectively. Because Ilo is unknown, there may
be a global offset to the curve. We alleviate this by making
Ilo as close to zero as possible. Ihi is also unknown, leading
to a scale ambiguity for the curve in the measured region.
Often, we are able to set Ilo below the noise floor and Ihi

above the saturation level, enabling us to capture the entire
response curve. Regardless, even with both ambiguities, it
is still possible to linearize the measured intensities.
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Figure 1. Scale and offset ambiguities for radiometric calibration.
The response curve computed from our method suffers from two
ambiguities. Ilo is unknown, so there may be a global offset to the
curve. We alleviate this by making Ilo as close to zero as possible.
Ihi is also unknown, leading to a scale ambiguity for the curve in
the measured region.
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Figure 2. Curve merging. On the left, we see an example with two
measured irradiance blends. Each curve has an offset and scale
ambiguity. To merge the data from both curves, we must compute
the scale and offset that causes the two curves to coincide. To
do this, we simultaneously solve for a camera inverse response
function g(M) and scale/offset values for each mixture that best
align the data to g(M). The desired result is shown on the right.

2.2. Combining Multiple Irradiance Blends

We may want to use data from many different irradiances
mixtures to improve our estimate of the response function.
For example, we could increase the range of our measure-
ments by using multiple mixtures that span a broader range
of irradiances. Across a motion-blurred edge, we can use
many lines of pixel data to improve robustness to noise. In
either case, we estimate the low and high irradiances from
each mixture in order to combine the data. Figure 2 shows
this process graphically.

Mathematically, the problem is as follows. We observe n
irradiance mixtures. The number of observations in the j-th

mixture, for j ∈ (0, ..., n− 1), is lj . Each mixture is repre-
sented by a set of measurement-irradiance pairs, (Mij , Iij),
for i ∈ (0, ..., lj − 1). Mij is the pixel value for obser-
vation i in mixture j. Iij is the relative irradiance for that
measurement, up to the scale and offset ambiguity. Thus, it
could correspond to α from equation 4. Or, for evenly dis-
tributed samples between two irradiances (a linear ramp),
the Iij could simply be 0,1,2,...,(lj − 1), i.e., Iij = i.

We want to compute an inverse response function and a
set of irradiance scales and offsets that aligns these mea-
surements. We denote the offsets by rj and the scales by
sj . We assume the inverse response function g(M) can be
modeled by a polynomial of degree d with coefficients ak,
i.e., g(M) =

∑d
k=0 akMk. We solve for a, r and s that

minimize the following error function:

E =
n−1∑
j=0

lj∑
i=0

(
siIij + rj −

d∑
k=0

akMk
ij

)2

. (5)

We add a monotonicity constraint that forces the first
derivative of the inverse response function to be non-
negative. The scale and offset of the final curve is still am-
biguous, so we normalize it by setting a0 to zero and adding
a constraint that

∑
k ak = 1.

3. Display-Based Calibration Method
If the radiance of a computer monitor were linearly re-

lated to the displayed pixel value, we could easily measure a
camera’s response curve by displaying different known ra-
diances and recording the intensities measured by the cam-
era for a fixed exposure time. Most displays, however, have
a non-linear relationship between the display pixel value
and emitted intensities. Using temporal color mixtures, we
can use an uncalibrated display to generate a linear ramp
of irradiances. We take advantage of the high frame rate of
computer displays to show several different images during
a single camera exposure. For some fraction α of the ex-
posure, we display pixel value Plo, and for the remainder
we display Phi. As in equation 4, this allows us to make
known linear combinations of the irradiances Ilo and Ihi

corresponding to the two selected pixel values.
For calibration, we choose Plo to be completely dark,

and Phi high enough to saturate the image sensor. If we can
display N images in one camera exposure, then we can use
a sequence of exposures to generate N+1 samples of the re-
sponse function that are evenly spaced in irradiance. Fitting
a curve through the measured values produces a continuous
representation of the camera response function.

As described, this method requires one image for each
irradiance measurement. We can accelerate the data cap-
ture by dividing the displayed image into a grid of patches,
and using each patch to display a different linear combina-
tion of radiances. In this way, we can calibrate the camera



response curve using just one image. Figure 3 shows an
example of this process. For cameras with very nonlinear
responses, one irradiance blend might poorly sample some
part of the response curve. In these cases, we extend the
method again by simultaneously displaying multiple grids
to produce multiple blends. We then combine the data from
the blends as described in section 2.2. In this way, we can
add more measurements to poorly sampled regions.

Implementation. We chose to implement our display-
based calibration using a regular LCD computer monitor.
Provided the camera exposure duration can be set to a mul-
tiple of the display time for the entire image sequence, we
do not need to synchronize the camera and display. We sim-
ply continuously repeat the sequence of images for the grid
pattern (see figure 3).

LCD monitors might have other characteristics that
could interfere with our measurements: unequal on and off
transition times for the LCD material, backlight flicker, or
inversion (switching the polarity of the applied LCD volt-
age at each pixel every frame to prevent damage to the LCD
material). To minimize these effects, we use a relatively
long exposure time of one second, display each image in the
sequence for an even number of frames (four), and ensure
that each pixel only switches its display value once during
the sequence.

One phenomena we observed when implementing our
grid-based method was that the brightness of each patch
was heavily influenced by bright surrounding regions. We
found that separating the patches by a black border elimi-
nated this effect. We use 30×30 pixel patches with 30 pixel
black borders between all patches. To prevent artifacts due
to non-uniform illumination of the display or vignetting in
the camera, we made sure that the overall size of the dis-
played pattern was small relative to the display and camera
image dimensions.

4. Calibration from Motion Blur
Our display-based method requires a display with known

frame rate and a camera with accurate control of the expo-
sure duration. For situations which preclude that method,
we offer a second approach: calibration from motion blur.
Figure 4 shows a simple way to use motion blur for ra-
diometric calibration. We create a target with a step edge
between two uniformly colored regions, place the target
fronto-parallel to the camera, then take a picture of the tar-
get while moving the camera so the direction of blur is
across the edge. Of course, one could also move the target.
Pixels in the blurred region along the edge will measure a
blend of the two uniform irradiances. If the target is uni-
formly illuminated and the motion is constant and parallel
to the plane of the target, the irradiance at the camera will
increase (or decrease) linearly from pixel to pixel across the

edge. This produces a series of irradiances at the sensors
that are linearly spaced between the irradiances for the two
uniform regions.

By choosing one region to be black and the other to be
bright enough to saturate the camera, we can capture the
entire range of the camera response. Moving the camera
quickly enough (or exposing for long enough) to blur over
many pixels will produce many samples of the response
function. We can combine the blurred values from many
lines to estimate the camera response function as described
in section 2.2.

Implementation. Some care must be taken to calibrate
the camera radiometric response using motion blur. The
relative motion between the camera and the target must be
constant, roughly parallel to the plane of the target, and with
some component across the edge. The target must also be
uniformly illuminated. Because the linear irradiance blend
is distributed across many pixels in the image, radiometric
falloff must be negligible over the motion blurred region.
The direction of camera motion need not be exactly per-
pendicular to the edge between the two colored regions, as
long as the edge is straight and the uniform regions are large
enough that the blurred region sees only the two intended ir-
radiances. Also, we carefully focus the camera to prevent
adding additional blur to the irradiance profile.

We manually specify the motion-blurred region using a
very simple user interface shown in figure 4 (c). We auto-
matically locate the monotonically decreasing or increasing
ramps of grayscale values in each scanline, and combine
data from the specified rows to produce the response func-
tion. If we use a symmetric target like that in the figure, we
can verify the accuracy of the calibration; if the motion is
not linear or the illumination varies too greatly, the response
curves calculated from the left and right edges of the black
region will not match. On the other hand, if these condi-
tions are satisfied, we expect the two curves to agree. We
visually inspect the curves; for a more quantitative method,
one could also measure the RMSE between them.

5. Experimental Results

In this section, we evaluate our results against for several
cameras. We use the online implementation of Mitsunaga
and Nayar’s method[11] (which we will call “Mitsunaga-
Nayar”) as a reliable reference, and also compute our own
ground truth data.

Ground Truth Data. We compute ground truth data us-
ing multiple exposures of a Macbeth color chart and a tech-
nique very similar to Mitsunaga and Nayar’s method. For a
given color patch, the relative exposure time of each im-
age is the relative irradiance of the patch in that image.
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Figure 3. Radiometric calibration by temporally blending two intensities on a computer monitor. In this example, we display a sequence of
nine images during a single camera exposure. For each patch, the bright and dark values are shown for different portions of the exposure.
This creates a grid of patches in the camera image that have linearly spaced irradiances. Plotting the irradiances versus their measured
values in the image produces a sampled version of the inverse response curve.
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Figure 4. Calibrating from motion blur. (a) An example of motion blur with constant velocity. (b) The pixel intensity for one row of pixels
crossing the blurred target. This is a sampled version of the camera response curve. (c) An example of a user interface for specifying the
motion blurred region.

This gives us one series of measurements with known ir-
radiances for each patch. We then simultaneously solve for
the relative irradiances of the patches (i.e. the irradiance
of one patch relative to another patch) and a single polyno-
mial that fits all of the scaled measurements. The relative
irradiance is not simply the patch reflectance; other factors
such as veiling glare in the camera, brightness offsets, and
non-uniform illumination also affect this ratio.

Display-Based Calibration. For the display-based cali-
bration method, we used a DELL 1907FPt monitor and dis-
played two grid patterns in each image. The low displayed
pixel value was always 0, and the high one was 220 (out of
255) for one grid and 100 for the other. The two grids were
each three rows of five patches, and displayed one above
the other on the screen. We used 60Hz displays and a one
second exposure for all cameras, so each pattern in the grid
sequence was displayed for four frames. We optimized us-
ing the Nelder-Mead simplex method [12]. Figure 5 shows
an example image of our pattern, taken with the Canon EOS
D20.

Calibration from Motion Blur. To verify the correctness
of our motion blur approach, we used a controlled setup to
create a very high-contrast edge and guarantee linear mo-

(a) (b)
Figure 5. Example inputs for our calibration method. (a) Two 5x3
grids of irradiance blends. (b) A static image of the light trap used
for our motion blur experiments (top), and an image taken while
the camera was moving (bottom).

tion. We used a light trap as our target. A light trap is a
large cavity with black interior walls and a small opening.
Light entering the opening is “trapped” inside because it is
mostly absorbed by the walls, so the hole emits very little
light. For our experiments, the hole is rectangular, and the
outside of the trap is white, creating a very high-contrast
white-black-white edge, shown in figure 5. We made the
light trap ourselves from an ordinary cardboard box. Care



Table 1. Mean RMSE, variance, and disparity of the estimated
inverse response functions in the normalized input domain. Ten
datasets were used for each method. For Mitsunaga-Nayar, we
removed two out of ten estimates that were obvious outliers.

Display Motion blur Mitsunaga & Nayar
RMSE 0.012 0.012 0.006
Variance 0.050 0.052 0.061
Disparity 0.017 0.029 0.017

must be taken to make the edge of the hole straight and thin
(so light does not reflect off the sides). We used sheets of
white paper to make the border. To ensure linear motion, we
mounted each camera on a linear translation stage. The ex-
posure time for the cameras was roughly one second. Still
and blurred images of the light trap are shown in figure 5.

Results. Figure 6 shows ground truth and our results for
the green channel response of three cameras: a Canon EOS
20D, a Nikon D70, and a PointGrey Research Dragonfly.
We chose the Canon and Nikon for their popularity, and
the Dragonfly because its response (nearly linear) differs
greatly from the other two. The plots were normalized to
the domain and range of our measured pixel intensities. A
typical range was 15 to 240 (out of 255). Our results agree
well with those obtained from the other methods.

Some of these calibration methods might be expected to
produce varying results for different input images. To inves-
tigate this, we used each method ten times with different in-
puts. Table 5 shows a comparison of the mean RMSE, vari-
ance, and disparity (maximum error) for ten trials of each
methods. The RMSE of our methods are roughly twice that
of Mitsunaga-Nayar, while our variance is slightly less. For
the Mitsunaga-Nayar method, however, we had to remove
two curves that were obvious outliers.

Motion Blur by Hand. Our motion blur calibration
method is not limited to lab settings. In figure 7, we show
two examples of motion-blur based calibration where we
manually created the motion. For this experiment, we taped
a rectangular piece of black cardboard to the inside of a
window. When photographed from the inside, this creates
a very high-contrast edge. We then photographed the card-
board while waving the camera sideways by hand. If the
exposure time for the camera is short enough, we can ex-
pect the motion to be roughly linear. We used a 1/30 sec-
ond exposure. Because the target has two symmetric edges,
we can verify the results by comparing the response curves
computed from the blurred regions on each side of the card-
board.

Figure 7 (a) shows one attempt. Figure 7 (b) shows that
the inverse response curves obtained from the left and right
sides of the target. These coincide very well, indicating
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Figure 7. Calibration from manual motion blur. (a) An image of a
piece of cardboard against a window, taken with the Canon EOS
20D while the camera was waved sideways by hand. (b) The in-
verse response curves computed from the left and right sides of the
blur region match each other, showing that this calibration result
is good. The difference between the two curves, measured as the
RMSE error, is under 1%. Both curves fit the ground truth well.
(c) A second motion blur example. (d) This time, the curves com-
puted from both sides do not match each other (an RMSE error
of 2.8%), indicating the motion was not linear. These are the best
and worst results from six trials. We used a 1/30 second exposure
time for all images.

that the data are good. As we see, the computed curve also
matches the ground truth. Figure 7 (c) and (d) show an im-
age and plot from a less successful attempt. The curves do
not match each other or the ground truth. These are the best
and worst results from six trials.

6. Discussion and Conclusion
We have presented the general idea and two specific

methods for using temporal color mixtures to compute
camera radiometric response functions. Our display-based
method is well-suited for lab environments. For outdoor
settings or with cameras whose exposure time cannot be set,
calibration from motion blur is recommended. The strength
of these techniques lies in their ability to directly sample the
response function. We can easily verify that we have cov-
ered the full measurement range, and plotting the measured
data provides immediate feedback about the shape of the re-
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Figure 6. Our calibration results for the green channel of three different cameras, compared to ground truth and Mitsunaga-Nayar. All
plots were normalized to the domain and range of our measured pixel intensities. Our results agree well with those obtained from the other
methods.

sponse curve and the accuracy of the computed fit. This is
not true for methods based on analyzing edges or noise dis-
tributions. Moreover, we do not rely on statistical priors [4]
over the camera response function. This might allow us to
calibrate cameras not represented well by existing priors.

One limitation of our method is the offset ambiguity in
computed response curve; in practice, we minimize this by
observing irradiances as near to zero as possible. Regard-
less, the scale and offset ambiguities do not prevent us from
linearizing the intensities. We assume control over the ex-
posure time for our display-based calibration method, but
one could imagine ways to calibrate without this constraint.
As one example, we could take a series of images of a sin-
gle high-speed LED flashing with varying duty cycles. One
interesting feature of our display-based method using multi-
ple irradiance blends is that it computes relative irradiances
for different displayed pixel values. This could be extended
to simultaneously calibrate the monitor and the camera.

We verified the correctness of the motion blur approach
using a controlled setup and further demonstrated the appli-
cability of our method to a hand-held camera in a relaxed
environment. Conceivably, our method could even be used
to calibrate videos or images for which the camera is no
longer available.
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