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Abstract

We present an over-segmentation based, dense stereo al-

gorithm that jointly estimates segmentation and depth. For

mixed pixels on segment boundaries, the algorithm com-

putes foreground opacity (alpha), as well as color and depth

for the foreground and background. We model the scene as

a collection of fronto-parallel planar segments in a refer-

ence view, and use a generative model for image forma-

tion that handles mixed pixels at segment boundaries. Our

method iteratively updates the segmentation based on color,

depth and shape constraints using MAP estimation. Given

a segmentation, the depth estimates are updated using be-

lief propagation. We show that our method is competi-

tive with the state-of-the-art based on the new Middlebury

stereo evaluation, and that it overcomes limitations of tradi-

tional segmentation based methods while properly handling

mixed pixels. Z-keying results show the advantages of com-

bining opacity and depth estimation.

1. Introduction

Dense stereo matching is challenging in the presence of

occlusions and textureless image regions. Color segmenta-

tion based methods have been shown to effectively handle

these cases [15, 9, 3, 8, 24]. These approaches assume that

depth varies smoothly within regions of homogeneous color

and that depth discontinuities coincide with color bound-

aries. This assumption helps resolve the depth ambiguity

within textureless regions and allows for precise delineation

of object boundaries corresponding to depth discontinuities.

A drawback of segmentation based stereo is that depth

discontinuities may not lie along color boundaries. As a re-

sult, image segmentations based on color information may

contain segments that span depth discontinuities. If the

color segmentation is held fixed, errors will result in the

final depth map [15, 24]. We present an approach that

overcomes initial segmentation errors by jointly estimating

depth and image segmentation.

Most dense stereo methods compute a single depth value

for each pixel. For mixed pixels (pixels which span two
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objects at different depths), computing the depths of the

foreground and background components of the pixel gives

a more complete understanding of the scene structure.

Moreover, one must compute the opacity (alpha) and fore-

ground/background colors for mixed pixels in order to get

high-quality results for Z-keying and view interpolation.

Alpha estimation is usually done as a post-processing step

[11, 5, 24, 7], given a presumed pixel-accurate depth map.

We incorporate alpha estimation into the depth and segmen-

tation computation to produce more accurate results. To be

clear, our goal is not calculating matting and depth informa-

tion for very fuzzy or hairy foreground objects. Instead, we

focus on the mixed pixels that occur along the boundaries

of nearly all objects in the scene, at all depths.

Our stereo reconstruction method jointly estimates im-

age segmentation, depth, and matting/depth information for

mixed pixels. We use an over-segmentation approach to

represent a scene as a collection of fronto-parallel planar

segments. The segments are characterized by their depth,

2D shape, and color. These parameters are jointly estimated

by alternating the update of segment shapes and depths. To

update the segment shapes, we use a generative model that

accounts for mixed pixels at the segment boundary as well

as the depth and shape probabilities. To update the segment

depths, we define a pairwise Markov random field for the

segments, and minimize its energy using belief propagation.

The algorithm explicitly handles occlusions by checking the

visibility of pixels based on the previous estimates of seg-

ment depths.

The rest of this paper is organized as follows. In the

next section, we review the prior art and identify our con-

tributions. Section 3 describes our scene representation and

stereo image model. Section 4 explains how we infer the

scene structure. In section 5, we validate our methods using

the new Middlebury stereo evaluation. Our method is cur-

rently ranked fourth best, and performs well on image pairs

that confound most segment-based approaches. A Z-keying

example shows the ability of the algorithm to extract alpha

values across the entire range of depths in the scene. Fi-

nally, we close with a discussion of the strengths and weak-

nesses of our method, and some comments on the treatment

of mixed pixels in the Middlebury stereo evaluation.



2. Related Work

This section describes prior work related to

segmentation-based stereo and alpha matting. For a

comprehensive review of dense two-frame stereo methods,

we refer the reader to Scharstein and Szeliski’s taxonomy

and evaluation [12]. Here, we review stereo methods

that use planar scene representations. Wang and Adelson

[17] decompose images into multiple layers for motion

analysis. They iteratively update the layers using affine

motion analysis and clustering. They cluster based on flow,

which can be inaccurate near occlusion boundaries. Baker

et al. [1] used a layered scene representation with alpha

for stereo reconstruction. They represent a stereo scene as

a collection of planes with per-pixel depth offsets. They

refine estimates of the plane equation and depth offset for

each layer using an algorithm that accounts for occlusion

and mixed pixels, but the initialization of the scene layers is

not automatic. Tao et al. [15] present a method using color

over-segmentation and a piecewise planar scene represen-

tation that inspired many other researchers [9, 3, 8, 24].

These methods perform well for reasons discussed earlier,

but they all segment the input images in a pre-processing

step and cannot recover from segmentation errors. Deng et

al. [6] partially overcome this vulnerability by subdividing

segments from one image using segment boundaries from

the other, creating what they call ”patches”. Their method

improves the stereo estimation, but because it updates the

patches, not the segmentations, it is still vulnerable to

initial segmentation errors.

With the exception of Baker et al. [1], the work men-

tioned above does not account for the partial opacity of

mixed pixels on object boundaries. Much of the work in

this area has concentrated on digital matting (extracting a

foreground object from an image or video). For example,

Chuang et al. [5] and Ruzon and Tomasi [11] propose mat-

ting methods that use user-defined trimaps. These trimaps

specify three regions in the image: background, foreground,

and the undefined area in which the algorithm must com-

pute the foreground opacity and color. These are matting,

not stereo, methods, so they do not compute depth. They re-

quire a user-defined trimap, and they assume the image has

clearly separable foreground and background components.

Some researchers have proposed stereo or optical flow

methods that explicitly account for alpha and are fully au-

tomatic. Zitnick et al. [24] propose a video view interpola-

tion method that computes depth using segmentation-based

stereo, uses the depth map to automatically create a trimap,

and then computes opacity and foreground/background

color information using Bayesian matting [5]. Hasinoff et

al. [7] also propose a multi-view stereo method that re-

fines a depth map by modeling occlusion boundaries as 3D

curves. Both methods first compute a depth map with a sin-

gle depth value per pixel, then refine the depth and compute

matting information. As such, they are vulnerable to errors

in the depth map computation, although Hasinoff et al. can

overcome small errors.

Zitnick et al. [22] present an optical flow method that

computes a consistent segmentation of two or more images

in a sequence and also accounts for mixed pixels. Their

method produces good optical flow results and has the ad-

vantage of updating the image segmentations, but it is not

directly applicable to stereo because it does not handle oc-

clusions or account for stereo constraints. Finally, Xiong

and Jia propose a method for stereo matching on objects

with fractional boundaries [19]. Their method uses stereo

image pairs to produce very impressive matting results, but

they present no quantitative evaluation of the accuracy of

their depth maps. They also formulate alpha estimation

as a matting problem, separating the entire scene into one

background layer and one foreground layer. With this as-

sumption of two layers, they can handle objects with very

large fractional boundaries (i.e. very fuzzy or hairy items),

which our method does not. However, they are limited to

two depth layers, so the method is not suitable for general

scenes, which may have objects evenly distributed across

many depths (for example, the Cones data set in the Mid-

dlebury stereo evaluation [12]).

3. Scene Representation and Stereo Image

Model

Figure 1 shows an overview of our algorithm. The in-

put is two stereo images that are rectified or calibrated with

respect to each other. One of these images is considered

the reference view, and we represent the scene as a collec-

tion of fronto-parallel planar segments in that view’s coor-

dinate system. We use an over-segmentation approach and

assume that all pixels in each segment have the same depth.

Slanted planes are therefore approximated by a set of small

segments. The key to our algorithm is alternately updating

the shape and depth of these segments. We use a generative

model of an image to update the segment shapes based on

maximum a posteriori (MAP) estimation. We model stereo

constraints as a pairwise Markov random field (MRF) and

update the segment depths using belief propagation. The

following subsections introduce these models, and section

4 describes our inference methods in detail.

3.1. A Generative Model of an Image for Updating
Segment Shapes

We model an image as a set of potentially overlapping

segments. Our generative model is inspired by Zitnick et

al. [22]. In contrast to their work, however, we model

stereo constraints. Moreover, we generate only one set of

segments for the scene, instead of a segmentation of each

input image.

Pixels in the reference image are mapped to segments by

segment indices. To handle mixed pixels that commonly

occur near segment boundaries, each pixel i is assigned to
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Figure 1. Overview of our algorithm.

two segment indices, sf
i and sb

i , representing the foreground

and background components, respectively. Pixels that do

not lie near segment boundaries are captured by the case

sf
i = sb

i .

Each segment is modeled by its depth, color and shape.

We assume each segment has a constant depth and its color

is modeled by a Gaussian. A segment’s spatial distribu-

tion is modeled using both a Gaussian and the set of pixels

currently assigned as foreground to the segment. Thus, a

segment s is described by the parameters

Φs = (ds,µs,Σs,ηs,∆s, Ss), (1)

where (µs,Σs) and (ηs,∆s) are mean and covariance ma-

trix of the Gaussian distribution for the segment’s color and

shape, respectively, and ds is the depth of the segment. Ss

is a set of pixels over which segment s is believed to exist

as foreground.

We express our generative model in a Bayesian frame-

work and solve for the parameters using MAP estimation.

Given the observed color ci and position xi of a pixel i, as

well as the segment parameters Φ, we factorize the genera-

tive model as follows:

p(ci,xi, c
f
i , cb

i , αi, s
f
i , sb

i |Φ) ∝

p(ci|c
f
i , cb

i , αi) p(cf
i |s

f
i ,Φ) p(cb

i |s
b
i ,Φ) p(αi)

p(xi|s
f
i ,Φ) p(xi|s

b
i ,Φ) p(sf

i ) p(sb
i ) . (2)

We model the first factor of this equation by

p(ci|c
f
i , cb

i , αi) = N (ci;αic
f
i + (1 − αi)c

b
i ,ψ), (3)

where N (x;µ,Σ) is the normal distribution with mean

µ and covariance matrix Σ. This equation assumes the

observed color of pixel i is generated by a noisy alpha-

blending of the segment colors.

Given the segment indices sf
i and sb

i , the conditional dis-

tributions of the two hidden pixel colors c
f
i and cb

i are com-

puted using the segments’ color models as

p(cf
i |s

f
i ,Φ) = N (cf

i ;µ
s

f
i

,Σ
s

f
i

), (4)

and similarly for cb
i . The prior p(αi) on αi is set to be

uniform and may be omitted.

The spatial likelihoods for a pixel i given segment in-

dices sf
i and sb

i are split as

p(xi|s
f
i ,Φ) =

p(xi|s
f
i ,η

s
f
i

,∆
s

f
i

) p(xi|s
f
i , S

s
f
i

) p(xi|s
f
i , d

s
f
i

) (5)

p(xi|s
b
i ,Φ) = p(xi|s

b
i ,ηsb

i
,∆sb

i
) p(xi|s

b
i , Ssb

i
). (6)

The first factor p(xi|s
f
i ,η

s
f
i

,∆
s

f
i

) is equal to the

normal distribution N (xi;ηs
f
i

,∆
s

f
i

), and similarly for

p(xi|s
b
i ,ηsb

i
,∆sb

i
). The second factors enforce the con-

straint that segments should be locally coherent. This is

accomplished by favoring segment assignments with strong

local support. Specifically, we define them to be propor-

tional to the number of pixels within a small neighborhood

εi of xi:

p(xi|s
f
i , S

s
f
i

) ∝
∑

j∈εi

h(j, S
s

f
i

) (7)

p(xi|s
b
i , Ssb

i
) ∝

∑

j∈εi

h(j, Ssb
i
). (8)

The value of h(j, Ss) is one if pixel j is a member of Ss and

zero otherwise. Note that the background segment index is

only influenced by the current assignment of the foreground

segment index in the neighborhood εi. This constraint lim-

its the extent of mixed pixels near the segment boundaries.

The final factor p(xi|s
f
i , d

s
f
i

), only affected by the fore-

ground segment index, ensures that the stereo matching cost

for a pixel assigned to depth d
s

f
i

is small:

p(xi|s
f
i , d

s
f
i

) ∝ exp(−C(i, d
s

f
i

)). (9)

Here, C(i, d
s

f
i

) is the matching cost described in detail in

the next subsection. This formulation ensures that the pixel

should belong to a segment whose estimated depth d
s

f
i

is

likely given the depth probability distribution of the pixel.

We assume the segment priors are uniform. As a result

p(sf
i ) and p(sb

i ) = 1
M

, where M is the number of segments.

Since p(sf
i ) and p(sb

i ) are uniform, they may be omitted

when computing the MAP estimate.

3.2. Stereo Constraints for Updating Segment
Depths

We model stereo and smoothness constraints using a

pairwise MRF of segments, as shown in Fig. 2. Each node

corresponds to a segment s and shares edges with neigh-

boring segments t for (s, t) ∈ N , where N is the set of

all adjacent segments. Here we define segments using only

the foreground segment indices; i.e. the background seg-

ment indices are ignored in the depth update step. The state

of each node is its corresponding segment’s depth, so the

number of states for each node is equal to the number of



Figure 2. Stereo and smoothness constraints on the segment depths

are modeled using a pairwise MRF, in which each segment cor-

responds to a node, and the nodes of neighboring segments are

joined by edges.

depth levels. Zitnick et al. [23] use this formulation with

a fixed segmentation. Our algorithm, by contrast, updates

the topology of the MRF in each iteration using the updated

segment shapes.

We measure the quality of a depth assignment for the

MRF using the following energy function:

E =
∑

s

Ds(ds) +
∑

(s,t)∈N

V (ds, dt). (10)

Here, Ds(ds) is the cost (commonly called the “data cost”)

of assigning a depth ds to a segment s. This cost accounts

for the matching of visible pixels between stereo views and

a penalty for occluded regions. The term V (ds, dt) is a cost

(the “discontinuity cost”) that penalizes depth assignments

for neighboring segments s and t that violate a smoothness

assumption.

3.2.1 Data Cost

We define the matching cost of a visible pixel i to be

C(i, ds) = ρd(F (xi, ds)). (11)

The function F measures the intensity similarity between

the pixel in the reference image whose coordinate is xi and

the pixel projected to the other image with a depth value ds.

For this function, we use Birchfield and Tomasi’s pixel dis-

similarity measure [2], which is insensitive to image sam-

pling. The function ρd is an error function that is robust to

outliers due to noise, occlusions, specularities, and so on.

We use a truncated L1 norm [14, 13]

ρd(x) = − ln((1 − ed) exp(−|x|/σd) + ed), (12)

where the parameters σd and ed control the shape of the

function.

Even with robust similarity measures, it is important to

explicitly identify occluded pixels in the reference view

so the algorithm does not match occluded regions in one

view with pixels in the other. We incorporate an occlusion

penalty in the data cost. We use a formulation that is sim-

ilar to ones used in other segmentation-based stereo works

[3, 18]. Before calculating the data cost for each iteration,

we create an occlusion map by warping all of the pixels

in the reference view to the non-reference view using cur-

rently estimated segment depths. The warped pixel depths

(in the non-reference view coordinate system) are stored at

the projected pixel coordinates. If more than one pixel from

the reference view project to the same image coordinates in

the non-reference views, they are sorted in depth order.

When calculating the data cost for each pixel, we project

the pixel into the non-reference view and check its depth

against the occlusion map. We distinguish the following

three visibility cases: (a) the projected pixel is visible and

occludes no other pixels; (b) the projected pixel is occluded

by another pixel; and (c) the projected pixel is visible,

but occludes another pixel. For each pixel, the data cost

C̄(i, ds) for each visibility case is given by

C̄(i, ds) =







C(i, ds) : case (a)

λocc : case (b)

C(i, ds) + λocc − C(j, d′s) : case (c)

. (13)

For case (a), the pixel data cost is simply the matching cost.

For case (b), an occluded pixel, the data cost is λocc , a pos-

itive constant that slightly penalizes occluded pixels. For

case (c), the data cost favors low matching costs for the

projected pixel, penalizes occlusions, and discourages oc-

cluding other pixels with low matching costs. C(j, d′s) is

the matching cost of the occluded pixel j with (previously

estimated) depth d′s.

The data term of each segment is the sum of the matching

costs of the pixels in the segment:

Ds(ds) =
∑

i∈s

C̄(i, ds). (14)

3.2.2 Discontinuity Cost

Like many other stereo methods, ours assumes that depth

varies smoothly almost everywhere, except at object bound-

aries. We also assume that neighboring segments with sim-

ilar colors are likely to have similar depths. Moreover,

the larger the shared boundary between two segments, the

stronger the discontinuity penalty should be. We express

this discontinuity cost using a truncated L2 norm of depth

difference of neighboring segments:

V (ds, dt) = λdisc bst min((ds − dt)
2, Tst). (15)

The parameter λdisc is a positive constant, bst is the number

of pixels on the boundary between segments s and t, and

Tst is the truncation point for the L2 norm function. For

each neighboring pair of segments, the truncation point is

set such that pairs with large color differences have a small

impact on the discontinuity cost, and pairs with small dif-

ferences have a large impact. We use

Tst = max(Tmax exp(−||µs − µt||
2/2σ2

c ), Tmin), (16)

where µs and µt are the mean colors of segments s and t.
The parameter σc controls the influence of the segments’

color difference. Tmin is chosen to be a small value to en-

sure that each segment has at least some influence on its

neighboring segments.



4. Inference Procedure

This section describes the details of our inference pro-

cess using the models introduced in the previous section.

For the initial segmentation, we use a mean-shift segmen-

tation method [4] with default parameters. The resulting

large segments are partitioned into a grid of 8 × 8 pixels,

because our method is based on over-segmentation. The ini-

tial depth of each segment is estimated using max-product

belief propagation on our stereo MRF model. Because we

have no occlusion information for this initial step, the mes-

sage update order can strongly impact the inference. We use

a synchronous update schedule [16], in which the messages

are only updated at the end of each iteration, to ensure that

the message update order does not affect the inference.

Next, we alternate between updating segment shapes and

segment depths. To update segment shapes, we must find

parameters which maximize the probability in Eq. (2) for

each pixel i. To do this, we first choose candidate segment

indices (ŝf
i , ŝb

i ) for the pixel based on the current estimate

of segment assignments S and the constraints in Eqs. (7)

and (8). The candidate segment indices can be any pair of

two segments found within the neighborhood εi of pixel i.

For each index pair (ŝf
i , ŝb

i ), we approximate alpha using

the estimated segment colors µs as

α̂i =
(ci − µŝb

i
) · (µ

ŝ
f
i

− µŝb
i
)

||µ
ŝ

f
i

− µŝb
i
||2

. (17)

We use another approximation that the background color

is same as the background segment color, i.e. ĉ
b
i = µŝb

i
.

Given ĉ
b
i and α̂i, we can compute the foreground color us-

ing the alpha matting equation. Finally, we choose the pa-

rameters that maximize the probability of Eq. (2). For each

iteration, to roughly estimate ψ, the color noise covariance

matrix, we compute and average the noise covariance matri-

ces of all of the segments. If at any point a segment becomes

too small (assigned to fewer than 12 pixels), it is discarded

from the segmentation map, and the pixels within that seg-

ment are merged into the neighboring segments.

After each shape update step, we recalculate the occlu-

sion map with the newly estimated segment depths. We then

use belief propagation to update the segment depths. In con-

trast to the initial step, we now have occlusion information

(based on previously estimated depths), so we can use an

accelerated update schedule in which updated messages are

immediately used to calculate the messages of neighboring

segments. This scheme makes the inference fast, even with

many segments. In our experiments, we only need two mes-

sage propagation steps in each depth update step. We store

the messages at the end of each depth update step, and use

them for the initial messages in the next iteration. When-

ever a new edge appears due to segment shape updates, the

message for that edge is initialized to zero.

Table 1. Parameters used for the Middlebury evaluation.

εi λocc λdisc ed σd σc Tmax Tmin

5×5 1.1 0.1 0.01 4.0 12.0 64.0 0.9

5. Experiments

In this section, we evaluate our method with the follow-

ing experiments. First, we show the accuracy of our stereo

algorithm using the new (second version) Middlebury stereo

evaluation [12]. Next, we present the robustness of our

adaptive segmentation method. Our method recovers from

initial segmentation errors by updating segment shapes, and

performs well for the Map image pair, which is known to be

difficult for fixed segmentation methods. Finally, we show

a Z-keying example to demonstrate the quality of our alpha

matting results.

5.1. Stereo Reconstruction Accuracy

The error metric for the Middlebury stereo evaluation is

the percentage of “bad pixels” (pixels for which the abso-

lute disparity error is greater than 1 pixel) in the following

three regions: non-occluded regions (RŌ), all regions ex-

cept for unknown pixels (RA), and regions near depth dis-

continuities (RD). We used the same parameters, shown in

Table 1, for all stereo pairs. We discretized the disparity

space with an interval of 0.5 pixels, and performed 20 iter-

ations of shape and depth updates. The running times were

about 90 seconds for the Tsukuba data set (384×288 pix-

els, 31 depth levels) and 20 minutes for the Cones data set

(450×375 pixels, 119 depth levels) on a 3.2 GHz PC.

Since the foreground and background segment indices

for mixed pixels at segment boundaries differ, we have two

different depth values for those pixels. The Middlebury

evaluation, however, requires a single-valued depth map

(one with one depth value per pixel). We use a threshold

αth to select a depth value for mixed pixels: for pixel i with

sf
i 6= sb

i , if αi ≥ αth then select d
s

f
i

, otherwise use dsb
i
.

Table 2 summarizes the results of our method with two

fixed thresholds (0.0 and 0.5) for all data sets, compared

with the other state-of-the-art methods. Figure 3 shows

depth maps and their “bad pixels” (shown as black for non-

occluded regions and gray for occluded regions) using dif-

ferent alpha thresholds, for an inset from the Tsukuba im-

age. The table and figure show that for the evaluation, the

best threshold differs for different data sets. In particular,

our results suggest that the Tsukuba depth map is biased

toward foreground depth values for mixed pixels. This is

confirmed by the insets in Fig. 3; the left Tsukuba input im-

age more closely resembles our (αth = 0.5) depth map than

the (αth = 0.0) one. Using a fixed alpha threshold value of

0.5 for all stereo pairs, the average rank of our algorithm is

the fourth best in the Middlebury evaluation.

The final depth maps, segmentation maps, and alpha

mattes for the Middlebury image pairs are shown in Fig. 4.



Table 2. Results on the new Middlebury stereo evaluation [12], comparing the percentage of “bad pixels” in non-occluded regions (RŌ),

all regions except for unknown pixels (RA), and regions near depth discontinuities (RD). The best result in each column is in bold print.

Subscript numbers for our method are the relative ranks in each column. The average rank of our algorithm is currently fourth best on the

evaluation.

Algorithm
Tsukuba Venus Teddy Cones

RŌ RA RD RŌ RA RD RŌ RA RD RŌ RA RD

AdaptingBP [9] 1.11 1.37 5.79 0.10 0.21 1.44 4.22 7.06 11.8 2.48 7.92 7.32

DoubleBP [20] 0.88 1.29 4.76 0.14 0.60 2.00 3.55 8.71 9.70 2.90 9.24 7.80

SubPixDoubleBP [21] 1.24 1.76 5.98 0.12 0.46 1.74 3.45 8.38 10.0 2.93 8.73 7.91

Ours (αth = 0.0) 1.52 16 1.93 13 4.77 2 0.11 2 0.22 2 1.07 1 7.10 11 11.3 6 16.6 10 3.75 10 9.21 8 9.28 11

Ours (αth = 0.5) 1.69 17 2.04 16 5.64 4 0.14 3 0.20 1 1.47 2 7.04 11 11.1 6 16.4 9 3.60 9 8.96 8 8.84 9

SymBP+occ [13] 0.97 1.75 5.09 0.16 0.33 2.19 6.47 10.7 17.0 4.79 10.7 10.9

SO+borders [10] 1.29 1.71 6.83 0.25 0.53 2.26 7.02 12.2 16.3 3.90 9.85 10.2

Segm+visib [3] 1.30 1.57 6.92 0.79 1.06 6.76 5.00 6.54 12.3 3.72 8.62 10.2

(a) (c) (e) (g)

(b) (d) (f) (h)

(i)

Figure 3. Depth maps and bad pixels for an inset of the Tsukuba data set, for different alpha thresholds: (a, b) αth = 0.0, (c, d) αth = 0.5,

and (e, f) αth = 1.0. (g) Ground truth. (h) Estimated alpha matte. (i) Original left image. According to the evaluation ground truth data,

best results are obtained with αth = 0.0. Although visually the ground truth depth map (g) matches our αth = 0.0 depth map (a), the

actual left Tsukuba input image (i) seems to more closely resemble our αth = 0.5 depth map.

(a) (b)

Figure 5. Result from Puppet image pair. (a) Original left image

and (b) depth map (αth = 0.5).

Sharp object boundaries are recovered for all four data sets.

Although slanted planes are approximated well with small

segments of constant depth, our method fails for heavily

slanted planes, such as the floor in the Teddy data set. Fig-

ure 5 depicts another result obtained using the Puppet image

pair from [23], which is comparable to the results in [23].

5.2. Robustness of Adaptive Over­Segmentation

Figure 6 shows close-up views of the segmentation and

depth maps at different iterations and demonstrates the ro-

bustness of our adaptive over-segmentation. The mean-shift

segmentation method (with default parameters) [4] labels

objects at different depths as one segment due to their simi-

(b) (c)(a)

Figure 6. Close-up views (The right edge of the left plane in the

Venus image (top) and the left leaf in the Puppet image (bottom))

of segmentation and depth maps at (a) initial step, (b) after 2 itera-

tions, and (c) after 10 iterations. Our method recovers from initial

segmentation errors, where objects at different depths are labeled

as one segment, although there are still small regions that have

wrong depth values.

lar colors (Fig. 6 (a)), causing errors for methods that use

fixed segmentations. Our method, by contrast, recovers

from these errors, producing better depth maps (Figs. 6 (b)

and (c)).

Figure 7 shows stereo reconstruction results for the Map

data set from the old Middlebury stereo evaluation. This

data set is difficult for typical segmentation-based methods



(a) (c) (d)(b)

(e) (g) (h)(f)

(i) (j) (k) (l)

Figure 4. Output images. (a–d) Depth map (αth = 0.5), (e–h) segmentation map, and (i–l) alpha matte for each data set.

[8, 3, 18, 23], because color segmentation fails at object

boundaries with similar foreground and background colors.

For example, Fig. 7 (d) shows the results from Hong and

Chen’s method [8], a color-segmentation based algorithm

that ranked third on the old Middlebury evaluation. Deng

et al.’s patch-based approach [6] overcomes many of these

errors, as shown in Fig. 7 (e). (Deng et al. fill occluded re-

gions with neighboring depth values because these regions

were not considered in the old Middlebury evaluation.) Our

result is similar in quality to Deng et al.’s (Fig. 7 (f)). Cur-

rently, Sun et al. [13] obtain the best results for this image

pair by using segmentation as a soft constraint (Fig. 7 (g)).

5.3. Z­Keying

Figure 8 shows a Z-keying result using estimated depth

maps and alpha mattes for the Teddy and Cones image pairs.

We extracted the teddy bear from the left Teddy image and

composited it into the left Cones image. Because we use

alpha mattes for both extraction and composition, there is

no color bleeding on boundaries between the teddy bears

and other objects (Figs. 8 (a) and (b)). By comparison, the

matting results using a single depth map (calculated with

αth = 0.5) and no alpha matte (Fig. 8 (c)) have artifacts.

6. Discussion and Conclusions

Our adaptive over-segmentation based stereo algorithm

overcomes limitations of traditional segmentation based

methods while properly handling mixed pixels on object

boundaries. Our depth maps are not only accurate according

to accepted standards (Middlebury) but in fact more com-

plete, because we produce opacity information and fore-

ground/background colors and depths for mixed pixels. In

contrast to most matting methods, we produce this informa-

tion along depth discontinuities throughout the scene, not

only for foreground objects. Currently, the most significant

limitation of our method is that it assumes a constant depth

for all pixels in each segment, so it does not handle heav-

ily slanted planes well. In future work, we could attempt to

address this problem by using oriented planes or parametric

surfaces instead of fronto-parallel segments.

To compare our stereo results with other researchers, we

create single-valued depth maps to use with the Middle-

bury stereo evaluation. In doing so, we discovered that

the Tsukuba ground truth depth map is biased toward the

foreground depths of mixed pixels. Our performance on

the Middlebury evaluation gives us good confidence in our



(a) (b) (c)

(d) (e) (f) (g)

Figure 7. Results for the Map image pair, known to be difficult

for segmentation based stereo methods. (a) Left input image. (b)

Right input image. (c) Ground truth depth map. (d–g) Computed

depth maps (middle row) and their bad pixels (bottom row). (d)

Hong and Chen [8]. (e) Deng et al. [6]. (f) Our method (αth =

0.5). (g) Sun et al. [13].

(a) (b) (c)

Figure 8. Z-keying example. (a) The teddy bear is extracted from

the Teddy data set, and composited to the Cones data set. (b)

Close-up views of rectangles in (a). (c) Close-up views of the

result with a single depth map (αth = 0.5) and no alpha matte.

depth reconstruction, but it does not fully evaluate the qual-

ity of our matting results. Computing depth and matting in-

formation is clearly important for applications like view in-

terpolation and Z-keying. In the future, we believe it would

be useful to create a new stereo evaluation with ground truth

opacities, and foreground/background colors and depths.
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